Posts

‘What to expect when you’re expecting to grow old’: An interview with Whole Body Microbiome co-authors, Drs. Jessica and Brett Finlay

As microbiome science advances rapidly, the number of books on microbiome-related topics is growing—yet it can be difficult to find reliable, science-based information. The hottest new microbiome book not only contains robust scientific information, but has suggestions on how to apply the findings throughout the lifespan: The Whole-Body Microbiome, written by Microbiome Insights co-founder Dr. Brett Finlay, along with his daughter Dr. Jessica Finlay, an environmental gerontologist.

The new book is a practical take on how to use the latest knowledge about the microbiome for healthy aging, with the father-daughter pair offering perspectives from multiple scientific fields and different points in the lifespan. Jessica Finlay brings to bear her pioneering work in the area of ‘applied clinical geography’, while Brett Finlay (a recent Canadian Medical Hall of Fame inductee) brings decades of insights gained from his scientific work in medical microbiology and immunology.

In this interview, the Drs. Finlay describe how their personal worlds were changed by their knowledge about the human microbiome—and how their book can be put to use, not only by members of the general public, but also by fellow scientists and medical professionals.

What gap did you hope to fill by writing this book?

 JF: What to expect when you’re expecting to grow old? While there is an entire industry devoted to preparing expectant parents, scant resources guide us on how to grow old. This is especially true if you’re looking for scientifically-based, accurate information to inform lifestyle, diet, household, and health practices. The major gap we aimed to fill was scientifically-based knowledge on aging and longevity, distilled for a wide audience. The microbiome’s effects on healthy aging has not yet been covered in popular literature.

While there is a lot of hype about the gut microbiome, we in fact know that microbial communities all over our bodies affect how our brain, teeth, skin, heart, gut, bones, immune system, and nearly every other body part functions as we progress through life. Our wellbeing is also intimately to the microbes that surround us – on our cellphones, kitchen sponges, houseplants, pets, and desks. In the book we take a holistic approach to the microbes in and around us (not just in the gut) to explore how they are integral to a healthy and long life.

We focus on aging as a lifelong process in Whole-Body Microbiome. You don’t just suddenly ‘flip the switch’ and become old at, say, 65. We accumulate health risks and liabilities throughout our entire lifetimes. The book offers lifestyle strategies and “quick tips” that we can all take advantage of, whether we’re eighteen or eighty.

BF: Having already written a book for parents on early life microbes—and not getting any younger—we wanted to discuss microbes and healthy aging. It was important to us not just to focus on ‘the elderly’, but on the entire aging process, which includes adults of all ages.

What are a few of the main messages in your book?

BF:  We live in harmony (usually) with our microbes, and they play a much larger role in our body’s functions than we once thought.  By paying attention to our microbes, we can have significant effects on many aging processes.

JF: Yes, the first main message is to embrace our microbes! They are lifelong partners who are heavily impacted by our lifestyle decisions, and necessary for our health and longevity.

We detail three overarching strategies that intertwine healthy microbes and healthy aging:

(1) Consume a balanced diet filled with fiber (e.g., fruits, nuts, vegetables, whole grains, berries), fermented foods, and limited meat and refined sugars.

(2) Stay active: This doesn’t necessarily mean marathon training, but rather moving around regularly throughout the day, engaging in varied aerobic and strength activities.

(3) Stay engaged with others: Regular social contact with family, friends, and extended networks is important for our wellbeing – and our microbes as well! We deposit, swap, and share microbes every time we shake hands, hug, play cards, eat communally, and share spaces.

As scientists, how has the microbiome changed the way you think?

BF:  I now see the world through a veneer of microbes! Even though we can’t see them, they are there and can affect many things.

 JF: My outlook on the world has also shifted: I now pause to consider my microbes when shopping for groceries, brushing my teeth, sending a text message, washing my hands, talking to my doctor, hugging a family member, going for a run, and gardening.

I also now see microbial connections in my research as an environmental gerontologist: when I consider the level of cleanliness and sanitization in a private home or assisted living facility; microbial exposures in later life through pets, socializing, hospitalizations, and even houseplants; and everyday diet, lifestyle, and health habits that impact older people’s microflora.

How can your professional colleagues make use of this book?

BF: It is based on peer-reviewed science, so scientists will appreciate it. They can use it for their own personal improvement, or if they specialize in one area, they can get a broad overview of the wonderful and amazing invisible world of microbes that live in and on us.

JF: We distill peer-reviewed scientific research and include interviews with leading scientific and medical experts in each chapter. Taking into account the rapid scientific advances and exploding knowledge, we take the current ‘pulse’ of microbiome research as it relates to adult health and longevity.

In addition to providing relevant information that can inform personal health and diet/lifestyle decisions, we aim to inspire our professional colleagues and fellow scientists to keep pursuing this fascinating and important area of research. This includes figuring out specific microbial genes and mechanisms responsible for particular effects in and on our bodies. We need more studies and data!

What tips do you have about microbiome-related science communication?

BF: Some of us scientists work with microbes and see evidence of what they do every day. But most people have a hard time appreciating microbes because they can’t see them. Convincing people of the invisible is hard. However, we know they have profound effects on both health and disease—and it is these aspects that we can focus on.

JF: There is a lot of hype and misinformation surrounding microbiome-related science: from misleading websites, to health claims (say, for probiotics) not supported by adequate clinical trials. It is important to be clear about what statements are supported by rigorous science, what statements are ‘not quite there yet’ (in terms of extrapolating findings from existing data), and what statements are downright wrong. This was an important task for us when writing the book. Beyond this, we recommend directing audiences to valid sources of information, such as PubMed and other academic search engines, for peer-reviewed articles/reviews, to stay informed.

 

New paper from Microbiome Insights co-founder on critical window for the gut microbiome in infants and the later occurrence of asthma

Among serious and chronic childhood diseases, asthma is the most prevalent. Currently there exists no cure for asthma—only treatments designed to help manage symptoms. Recently, a body of research attempting to unravel how this condition develops  in young children has emerged, so that prevention may one day eliminate or reduce the burden of this chronic condition.

Recent work identified the existence of a critical window during the early lives of both mice and children, during which gut microbial changes are associated with the development of asthma. This provided an avenue to explore the role of the gut microbiome during early childhood development and the onset of chronic diseases like asthma. Importantly though, we know the gut microbiome varies greatly among those raised in different geographic regions. Therefore, understanding how changes in gut microbiota related to asthma development differ globally may provide valuable insights into the mechanism of asthma development.

A new paper, led by Microbiome Insights co-founder Brett Finlay and published in The Journal of Allergy and Clinical Immunology, evaluated the associations of fungal and bacterial changes (dysbiosis) in infants raised in the non-industrialized setting of rural Ecuador. The research was conducted as a collaboration between members of the Universities of British Colombia and Calgary, the BC Children’s Hospital, and Universidad Internacional del Ecuador. Children with atopic wheeze (27 in total) along with 70 healthy controls were identified and their bacterial and eukaryotic gut microbiota analysed at age 3 months. Stool samples were collected and sequencing of the 16S and 18S regions predicted bacterial metagenomes while fecal short chain fatty acids were determined via gas chromatography.

Results indicated that, similar to the previous findings in Canadian children, microbial dysbiosis in Ecuadorian infants at 3 months was associated with the subsequent development of atopic wheeze. Surprisingly though, the dysbiosis observed in Ecuador involved different bacteria taxa as well as some fungal species, and this was more pronounced than in Canada. Some predictions based on the metagenome analysis also emphasized significant dysbiosis-associated differences in genes involved in carbohydrate and taurine metabolism. The fecal short-chain fatty acid acetate was reduced while caproate was increased in children at 3 months who later developed atopic wheeze.

This work continues to provide evidence that there is a critical window during the first 100 days of life during which microbial dysbiosis is strongly associated with development of atopic wheeze. The study also yielded several valuable pieces of information. Despite the involvement of different bacteria taxa, both the Canadian and Ecuadorian populations had decreased fecal acetate, suggesting alterations to fermentation patterns may be a common factor associated with atopic wheeze. Furthermore, the pronounced role of fungal dysbiosis in this study led researchers to recommend that “the role of P. kudriavzevii and other yeasts should be explored in mechanistic studies using animal models.”

Along with more studies characterizing the early microbiome in more communities around the world, optimized biomarker studies of microbial taxa and metabolites could lead to better predictions of risk and therapeutic strategies to restore gut microbial health as a prevention method.