On World Microbiome Day, Here Are Ten Microbiome Thought Leaders You Need to Know

Day in and day out, the Microbiome Insights team is immersed in scientific work on the microbiome. But on this very first World Microbiome Day, we’re taking a moment to step back and consider what—and who—made this remarkable field what it is today.

Although microbiome science is relatively young, the newest discoveries are only possible because of the preceding decades of research in fields as diverse as microbiology, genomics, molecular genetics, infectious diseases, and ecology. In this way, every microbiome researcher stands on the shoulders of those who came before.

With the help of Microbiome Insights co-founders Dr. Brett Finlay (Professor of Biochemistry and Molecular Biology, and Microbiology and Immunology at the University of British Columbia) and Dr. Bill Mohn (Professor of Microbiology and Immunology at the University of British Columbia), and our Scientific Advisory Board member Dr. Janet Jansson (Division Director of Biological Sciences at the Pacific Northwest National Laboratory)—all of whom qualify as thought leaders in their own right—we’ve compiled a list of ten scientists who have built a foundation for today’s microbiome researchers. These are individuals who, through their hard work and vision, have inspired their contemporaries to think differently and, in doing so, have shaped the field of microbiome science into what it is today.

Carl Woese

Dr. Carl Woese (1928-2012) was a biophysicist turned evolutionary microbiologist whose influence on the microbiome field cannot be understated. He was the first to show that bacteria evolve—and he demonstrated the phylogenetic relationships that backed this claim. Through this work he redefined the taxonomic scheme used to describe all forms of life on Earth and introduced us to the three domains of life we recognize today: Bacteria, Archaea and Eukaryota. His legacy is still seen in state-of-the-art lab techniques today, as he established phylogenetic methods using small subunit RNA and culture-independent methods that allow researchers to characterize microbial communities without first culturing them.

Norman Pace & trainees, including David Stahl

Dr. Norm Pace is, among many other things, a Distinguished Professor of Molecular, Cellular and Developmental Biology at the University of Colorado as well as a member of the National Academy of Sciences, a Fellow of the American Association for the Advancement of Science, the American Academy of Microbiology, and the American Academy of Arts and Sciences. His distinguished research career began with the breakthrough idea that, rather than trying to culture all of the unknown microbes of the world, one can instead scoop up genes from the environment and sequence them—essentially creating the many areas of microbiome study that are now among the most active in biology. Many trainees of his lab have gone on to make major contributions to many microbiome areas—in particular, Dr. David Stahl with his unique application of microbial ecology to environmental engineering.

James Tiedje

Dr. James Tiedje is a pioneer in the molecular exploration of soil and non-human environments. His work was instrumental in advancing many fields of microbiome research and addresses environmental concerns like climate change and bioremediation. His expertise in the field was even used for space exploration, as he designed experiments for the Viking Rover aimed at finding life on Mars. He is now a Distinguished Professor of Microbiology and Molecular Genetics and of Plant, Soil and Microbial Sciences as well as the Director of the Center for Microbial Ecology at Michigan State University.

Maria Gloria Dominguez-Bello

Dr. Maria Gloria Dominguez-Bello is Research Professor in the Department of Medicine at New York University whose work spans the fields of microbiology, anthropology, and agriculture. Collecting data from different populations across the globe, including populations in remote geographical areas, her work has focused on the immune and metabolic functioning of the microbiota through development, and how modern practices might impact this functioning. She is well known for her pioneering research on how Caesarean section birth impacts infant microbiome development, and possible microbiome ‘restoration’ techniques.

Martin Blaser

Dr. Blaser is Director of the New York University (NYU) Human Microbiome Program, and Professor of Microbiology at NYU School of Medicine. His early work with Helicobacter pylori confirmed its role in diseases like gastric cancer, providing one of the first examples for a bacterial role in these human diseases. He also brought attention to the importance of the early life microbiome and the dangers of antibiotics to a healthy microbiome and drug resistance—concepts covered for the general public in his highly praised book, Missing Microbes.

Jeff Gordon

How does the gut microbiome develop after birth, and how might this affect one’s nutritional status? These are the questions that drive Dr. Jeff Gordon, the Dr. Robert J. Glaser Distinguished University Professor at Washington University in St. Louis. He has shone a light on the role of the gut microbiota in metabolism and has taken on two pressing global health challenges: obesity and childhood malnutrition. By exploring interactions between the diet and gut microbiome he is discovering potential new ways of optimizing gut community development during the first few years of life.

Patrick Schloss

Dr. Patrick Schloss, now Professor in the Department of Microbiology and Immunology at the University of Michigan, took an interest in bacteria early in his career—not only the bacteria present in samples, but also what they were doing there. To answer this, he used gene sequencing and developed critical tools for analyzing microbiome data and making the interpretation of this data more accurate. With his flair for bioinformatics, his work has helped others make sense of the vast amounts of data generated by microbiome studies.

Stanley Hazen

Dr. Stan Hazen, chair of the Department of Cellular & Molecular Medicine in the Lerner Research Institute at Cleveland Clinic, changed the way researchers think about diet, the gut microbiome, and heart diseases by showing for the first time that a microbial metabolite (TMAO) was linked to cardiovascular disease. With his groundbreaking work in atherosclerosis and inflammatory disease research, he has impacted clinical practice and has laid the foundation for FDA-cleared diagnostic tests and cardiovascular disease drug development. Among his many accolades is his recognition as 2017 Distinguished Scientist by The American Heart Association for his many contributions to the field.

Eran Elinav

After completing his medical specialization as a doctor of internal medicine, Dr. Eran Elinav moved to the Department of Immunology at the Weizmann Institute in Israel. His work has uncovered the very personal links between humans, their diet, and gut bacteria. This has led to microbiome-focused research on personalized physiological responses to nutrition, and has garnered him several accolades including The Rappaport Prize for Excellence in the field of Biomedical Research.

Highlights of the Microbiome Drug Development Summit 2018 in Boston

Development and commercialization of microbiome-based therapeutics was the focus of a recent event in Boston (USA): the Microbiome Drug Development Summit 2018, organized by Hanson Wade. The Microbiome Insights team was in attendance – and here we share some of the highlights from this exciting event:

DAY 1

Jennifer Wortman, Senior Director, Bioinformatics, Seres Therapeutics

Unraveling Microbiome Signatures for Drug Design

Seres Therapeutics, one of the top 5 microbiome biotechnology companies in the world by funding, has a robust microbiome development pipeline. Their approach for addressing disease is to supply bacterial species that are associated with health in an attempt to change disease course.

Wortman explained the company has an extensive strain library isolated from healthy donors. They design consortia for their treatments using in silico design models (e.g. species and functions to reduce inflammation and increase epithelial barrier integrity) and by looking at species that are naturally co-occurring.

One product, SER-287, is an orally delivered community of purified Firmicutes spores associated with gastrointestinal health; it has efficacy in mild to moderate ulcerative colitis and is currently in phase 2B clinical trials. No serious drug-related adverse effects were noted in the trials. Research on SER-287 looks at engraftment: which species were absent at baseline but present after treatment? In all groups, they have seen engraftment of the spore-forming species following treatment: 19 species were more prevalent in patients achieving clinical remission; 13 species were more prevalent in patients not achieving remission.

Julia Cope, Director Scientific Operations, Diversigen

Microbiome Tools and Trends for the Pharmaceutical Industry

Cope spoke about the process for developing drugs to address various microbiome-linked diseases, including obesity, IBD, and cancer. To treat a disease, you need to know what to target. She cautioned that not all targets are likely to be bacterial in origin; researchers should also pay attention to viruses or fungal members of the microbiota.

Cope gave an example of four different studies that revealed four different microbiome-disease associations: taxonomy was similar but the specific biomarkers were different. She advised integrating as many cohorts as possible in order to prevent confounds.

Cathryn Nagler, President ClostraBio & Professor, University of Chicago

The Gut Microbiome, Immunity, and Allergic Disease

Nagler’s central question was whether we’ll be able to develop new microbiota-based strategies to regulate or prevent food allergies. She explained that certain populations of bacteria (classified as clostridia) make barrier-protective cytokines; they also stimulate the production of mucus, antibacterial peptides, etc.

Nagler’s data showed that lactobacilli were depleted in infants allergic to cow’s milk, with an increase in microbes that typically characterize an adult microbiome. Treatment with LGG increased tolerance of cow’s milk in these infants, and increased fecal butyrate. ClostraBio is engineering synthetic drugs to mimic the protective function of the health-associated bacteria.

Mark Smith, CEO Finch Therapeutics Group

Leveraging Reverse Translation to Develop Microbial Therapies

Smith described how broad-spectrum microbial interventions (i.e. fecal microbiota transplantation, or FMT) have good safety profiles in different therapeutic areas. Finch is using data from FMT trials to identify the bacteria linked with positive clinical outcomes, and then making these into bacterial cocktails for the treatment of disease. Smith described their product FIN-524 (developed with Takeda)–noting the challenges in understanding which organisms are driving the response.

An afternoon panel discussion, called Clinical Development of Microbiome-Based Therapeutics, covered a range of questions: clinical trial design in the development of microbiome-based therapeutics; key learnings from existing clinical programs for these therapeutics; and the relative importance of clinical efficacy and mechanism of action.

The panel discussed ‘hype’ in the media: some outlets inflate the importance of the scientific results, but companies need to temper the enthusiasm and stay focused on robust science. As for health professionals, they may be aware of this area but they are uncomfortable talking to patients about it until new products are approved and released into the market.

Regulation was another topic of interest: in particular, the need for flexibility in regulating new microbiome-related drugs. Panelists noted that there’s very little guidance in both the US and Europe, and it might make sense to develop guidelines or have guidance to expedite the development of some of these products. The Parallel Scientific Review is one mechanism that could help.

DAY 2           

Evgueni Doukhanine, R&D Scientist, Microbiome, DNA Genotek

Establishing Techniques for Reproducible and Insightful Microbiome Studies

Doukhanine discussed the necessary steps to design microbiome studies for scalability and innovative analysis. Many people pay attention to the sequencing technology—but the bioinformatics pipeline is also a very important factor. For 16S, they have seen that depending on the bioinformatic pipeline, the relative abundance recovery is quite different. DNA Genotek has moved from collection kits into study design consultation.

Phil Strandwitz, Co-founder & CEO, Holobiome

GABA-Modulating Bacteria of the Human Gut Microbiota

Strandwitz gave an overview of the microbiota-gut-brain axis and described the identification of a bacterium from the human microbiota that’s completely dependent on GABA for growth; Holobiome is using it to identify and culture a panel of diverse GABA-producing bacteria with the hopes that they can modulate levels of this important neurotransmitter.

Microbiome Insights hosts students for educational laboratory tour

JUNE 15, 2018 — Microbiome Insights was pleased to welcome an enthusiastic group of post-secondary students from Vancouver’s Alexander College this week for a laboratory tour and presentation.

During the visit team member Ben Tantika, Senior Next-generation Sequencing Technician, described the cellular and molecular biology techniques used in research labs to answer scientific questions.

The second year biology students heard about the importance of knowing the ways in which biological sciences techniques can be applied in both research and industrial settings. Tantika also helped the students understand how a career in life sciences can take shape, giving anecdotes about his own previous experiences as an international student studying at UBC Okanagan.

 

Dr. Julian Davies speaks at celebration marking the opening of Microbiome Insights’ new lab facility

The Microbiome Insights team gathered with nearly 100 clients, friends, and supporters on May 28th for a champagne reception to celebrate the company’s continued growth and the opening of its new laboratory facility in the award-winning Pharmaceutical Sciences Building at the University of British Columbia (UBC). The event was topped off by remarks by the esteemed Dr. Julian Davies, UBC Professor Emeritus and chair of the External Scientific Board of the NIH Human Microbiome Project from 2009-2012.

In his speech, Davies gave a brief history of how the Human Microbiome Project came to be. He traced microbiome research up to the present day, saying: “Microbiome science is really getting going and I think it’s great that UBC has its own microbiome company. We should support them as strongly as possible.”

Company co-founders Drs. Brett Finlay and Bill Mohn were in attendance at the reception, along with Microbiome Insights clients, advisors, investors, granting agencies, and strategic collaborators.

CEO Malcolm Kendall said, “The microbiome is a really important area of science that is an important part of human, animal, plant and environmental health.” He emphasized that the company is not merely a service provider — but that the team members have a wealth of knowledge and are actively moving the science forward. “As we gain more understanding in this area we hope to be able to use microbiome derived products, tools, and services to enhance health and potentially cure or treat diseases,” he said.

Kendall also announced that Microbiome Insights hopes to foster the growing microbiome research community at UBC as a founding sponsor of the first annual UBC Microbiome Conference, to be held November 8 to 10, 2018.

The company hosted a microbiome poster competition alongside the reception, with winners receiving free sequencing services. Kevin Zhong, a postdoc at UBC’s Suttle Lab, received the top prize (50 free samples of amplicon sequencing); Peter Rahfeld and Spence Macdonald from Withers Lab received 2nd place (30 free samples of amplicon sequencing) and 3rd place (20 free samples of amplicon sequencing), respectively. The people’s choice award (a cash prize of $250) went to Peter Dobranowski of BCCHR.

See here for some photos from the event:

Dr. Julian Davies speaks with Microbiome Insights CEO Malcolm Kendall and guests; PHOTO CREDIT: Amer Abu-Khajil

 

 

Drinks table awaiting guest arrival; PHOTO CREDIT: Amer Abu-Khajil

 

 

Microbiome Insights co-founder Dr. Bill Mohn speaks with attendees; PHOTO CREDIT: Amer Abu-Khajil

 

 

Poster competition held in conjunction with the reception; PHOTO CREDIT: Amer Abu-Khajil

 

 

Remarks by Dr. Julian Davies; PHOTO CREDIT: Amer Abu-Khajil

 

 

Microbiome Insights co-founders, employees, and advisors; PHOTO CREDIT: Amer Abu-Khajil

 

PRESS RELEASE: Microbiome Insights, Global Leader in Microbiome Testing, Expands to New Lab Facilities on UBC Campus

Company’s rapid growth spurs move to new state-of-the-art facility

VANCOUVER, British Columbia–(BUSINESS WIRE)–Microbiome Insights, Inc. has announced the opening of its new laboratory on the campus of the University of British Columbia (UBC). The company, a leading end-to-end service provider for microbiome DNA sequencing and bioinformatic analysis, has expanded into its new state-of-the-art lab in order to meet the needs of over 100 clients.

“We have experienced rapid growth in our business and across the microbiome testing industry,” says CEO Malcolm Kendall. “This move is a major milestone for our company and helps us meet the needs of our growing client base, to deliver the high-quality service they have come to expect from us.”

Founded by two world-leading microbiome researchers, Drs. Brett Finlay and Bill Mohn of UBC, Microbiome Insights has grown rapidly since its incorporation in 2015—supporting over 200 microbiome studies across academia and industry. The new laboratory, located in the UBC Pharmaceutical Sciences Building, enables the company to expand its capacity, hire additional laboratory technicians and initiate clinical laboratory (CLIA) certification.

Brad Popovich, former Chief Scientific Officer at Genome British Columbia and Chair of Microbiome Insights’ Board of Directors, says, “The emergence of leading companies like Microbiome Insights is a sentinel for the growth of the microbiome testing marketplace; they are following a similar pattern of accelerated growth the field of genomics testing experienced over the past two decades.”

Microbiome Insights marked the opening of the new laboratory on May 28th with a reception and microbiome poster competition. Dr. Julian Davies, one of the scientists that spearheaded the NIH Human Microbiome Project (HMP) and Chair of the HMP External Scientific Board until 2015, spoke about the importance of microbiome research and the unique benefits of a UBC-based microbiome testing company.

See the original BusinessWire press release here.